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Mental abacus (MA) is a technique of performing fast, accurate arithmetic using a mental image of an abacus;
experts exhibit astonishing calculation abilities. Over 3 years, 204 elementary school students (age range at
outset: 5–7 years old) participated in a randomized, controlled trial to test whether MA expertise (a) can be
acquired in standard classroom settings, (b) improves students’ mathematical abilities (beyond standard math
curricula), and (c) is related to changes in basic cognitive capacities like working memory. MA students out-
performed controls on arithmetic tasks, suggesting that MA expertise can be achieved by children in standard
classrooms. MA training did not alter basic cognitive abilities; instead, differences in spatial working memory
at the beginning of the study mediated MA learning.

Mathematics instruction typically begins by intro-
ducing children to a system of numerals and a set
of arithmetic routines that operate on these numer-
als. For many children around the world, early
math lessons are supplemented by the use of an
abacus, a physical manipulative designed for repre-
senting exact quantities via the positions of coun-
ters, whose historical origins date to 1200 AD or
earlier (Menninger, 1969). Extending the use of the
physical abacus, children in countries such as India,
China, Japan, and Singapore also learn a technique
known as mental abacus (MA). Through MA, users
create and manipulate a mental image of the physi-
cal device to perform arithmetic operations (see

Figure 1 for details of how MA represents number).
MA training results in remarkable abilities in expert
users: It compares favorably to electronic calcula-
tors in speed and accuracy (Kojima, 1954), it
enables rapid calculation even when users are
speaking concurrently (Hatano, Miyake, & Binks,
1977), and it allows users as young as 10 years of
age to win international calculation competitions
like the Mental Calculation World Cup. MA train-
ing also appears to train numerical processing effi-
ciency in children, as measured by a numerical
Stroop paradigm (Du, Yao, Zhang, & Chen, 2014;
Wang, Geng, Hu, Du, & Chen, 2013; Yao et al.,
2015).

In the present study, we explored the nature of
MA expertise. Specifically, we asked whether the
extraordinary levels of achievement witnessed in
experts can be attained by students in large K-12
classroom settings, and whether MA leads to gains
in mathematics ability relative to more conventional
curricula. In doing so, we also asked a more gen-
eral question regarding the nature of expertise, and
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whether attaining unusual levels of performance
requires changes to basic cognitive capacities, or
instead arises via the exploitation of existing cogni-
tive resources (see Ericsson & Smith, 1991, for
review).

MA abilities appear to rely primarily on nonlin-
guistic representations, especially visuospatial
working memory, as well as motor procedures that
are learned during initial physical abacus training.
Although the arithmetic computations of untrained
college students are highly disrupted by verbal
interference (e.g., concurrent speaking), MA users
are less affected by concurrent linguistic tasks and
much more affected by motor interference (Frank &
Barner, 2011; Hatano et al., 1977). Consistent with
this, while standard arithmetic routines recruit
brain regions related to verbal processing and ver-
bal working memory (VWM), MA computations
selectively activate regions associated with vision
and spatial working memory (SWM; Chen et al.,
2006; Hu et al., 2011; Li et al., 2013; Tanaka, Michi-
mata, Kaminaga, Honda, & Sadato, 2002). Both the
structure of the abacus itself and MA users’ compu-
tational limits are consistent with known limits to
visual working memory. Like all attested abacus
systems found in the human historical record, the
soroban represents number by chunking beads into
small sets of four or five, which corresponds to the
hypothesized capacity limits described in the visual
attention literature (e.g., Alvarez & Cavanagh, 2004;
Atkinson, Campbell, & Francis, 1976; Luck & Vogel,
1997; Todd & Marois, 2004). Furthermore, users of
MA appear to be limited to representing three or
four abacus columns at a time, suggesting that each
abacus column is represented as a distinct “object”
in visuospatial working memory (Frank & Barner,
2011; Stigler, 1984). Although previous work has
documented impressive abilities in MA experts, it
does not address whether MA training can produce

benefits for a broad range of students in a standard
classroom setting. One previous study attempted to
answer this question by assessing effects of MA
training on mathematics performance in a large
group of elementary school children (Stigler, Cha-
lip, & Miller, 1986). However, students were not
randomly assigned to conditions, and instead were
self-selected according to their interest in abacus
training. This lack of random assignment compli-
cates inferences about MA as an educational inter-
vention: Self-selecting groups of MA students are
likely to be interested in abacus training, and thus
may be more likely to benefit from MA training
than randomly assigned groups of MA students.
The present study thus tested the efficacy of MA
training via random assignment. In particular, we
were able to randomly assign participants in our
study to receive either MA or standard math train-
ing.

We also investigated how students achieve
expertise in MA. On one hand, MA expertise could
result from changes in the user’s ability to create
and manipulate structures in visual working mem-
ory that are caused by MA training (a hypothesis
we refer to as “cognitive transfer”). On the other
hand, MA training may not create cognitive
changes, but MA may instead exploit preexisting
abilities, such that expertise arises only in individu-
als with relatively strong SWM abilities, who may
be better able to learn MA (a hypothesis we call
“cognitive moderation,” because these cognitive
abilities would serve as moderators of the tech-
nique’s efficacy; Baron & Kenny, 1986). We describe
these two alternative accounts of MA expertise in
more detail next.

On the cognitive transfer hypothesis, MA exper-
tise may result from gains in basic cognitive abili-
ties—like imagery, working memory, and attention
—that appear to be important for MA computation.
Specifically, repeated practice of MA procedures—
tracking and manipulating beads in visual space—
may result in general advantages in visuospatial
working memory that in turn allow for further MA
mastery. By some accounts, MA training may even
have cognitive effects outside of SWM, and may
affect basic skills like reading ability (see Stigler
et al., 1986). While rare, examples of cognitive
transfer have been found in a small set of interven-
tions targeting executive function and spatial cogni-
tion, which are both hypothesized to moderate
academic performance (Diamond & Lee, 2011;
Holmes, Gathercole, & Dunning, 2009; Uttal et al.,
2013). Other research has suggested that working
memory in early childhood may be flexible and

Figure 1. The Japanese soroban style abacus used by participants
in this study, shown here representing the value 123,456,789. A
physical abacus represents number via the arrangement of beads
into columns, each of which represents a place value (e.g., ones,
tens, hundreds, thousands, etc.), with values increasing from
right to left. To become proficient at mental abacus, users of the
physical abacus learn to create a mental image of the device and
to manipulate this image to perform computations.
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strongly influenced by formal schooling experience
(Roberts et al., 2015). Because MA requires hours of
intensive practice with mental imagery, attentional
allocation, and cross-domain integration of informa-
tion (e.g., from numerical symbols to beads and
back again), it may offer an especially strong
opportunity for cognitive transfer. Furthermore, on
the hypothesis that MA expertise results from trans-
fer, it may be a technique that can be learned by
any student who is willing to undergo the needed
training, making it potentially useful in a wide
range of classroom settings.

If MA training does lead to improvement in
working memory, this improvement could provide
a second route for the training to impact classroom
arithmetic learning. Mathematical skills have been
shown to rely not only on VWM resources, but also
on the kind of visuospatial working memory that is
used in MA training (Hubber, Gilmore, & Cragg,
2014; Simmons, Willis, & Adams, 2012). In addition,
there are some suggestions that comprehensive
working memory training can transfer to classroom
mathematics learning, improving mathematics rea-
soning outcomes 6 months after training (Holmes
et al., 2009).

On the cognitive moderation hypothesis (Eric-
sson & Smith, 1991), in contrast, MA may be most
beneficial to a particular subset of students. Rather
than stemming from changes to an individual’s
basic cognitive capacities, MA expertise may result
when MA is learned and practiced by individuals
who are particularly able to perform complex
computations in working memory, and to manage
the attentional demands required by the method
(Frank & Barner, 2011). Specifically, individuals
who exhibit unusual MA expertise (e.g., Frank &
Barner, 2011; Hatano et al., 1977; Stigler, 1984)
may begin training with unusual abilities to store
and manipulate information in visual working
memory. Such individuals may become experts
not because the training affords expertise to any-
one who pursues it, but because the training
exploits users’ existing cognitive resources. On this
hypothesis, MA outcomes would be predicted by
performance on cognitive tasks at the beginning of
MA training because mastery of the technique
requires some baseline level of cognitive abilities.
But there would be no change in these abilities
due to MA practice, unlike under the cognitive
transfer hypothesis. Accordingly, the implementa-
tion of MA training in individual classroom set-
tings would require care so as to ensure that the
technique was appropriate for that particular
group of students.

To explore the nature of MA and its utility in
large classroom settings, we conducted a large
longitudinal study at a school located in Vado-
dara, India. This school had previously adopted a
short (1 hr) weekly MA training in addition to the
standard curriculum for students in the second
grade and above. Thus, instructors and appropri-
ate training infrastructure were already in place.
For our study, the school agreed to alter their cur-
riculum so that starting at the beginning of the
second grade, half of the children in our study
could be randomly assigned to study MA for
3 hr/week (MA group). The remaining half of stu-
dents were assigned to a control group who
received no abacus training but instead performed
3 hr of supplementary practice using a state-
approved K–12 mathematics curriculum (resulting
in an identical amount of supplemental training).
The supplemental curriculum was selected because
it reflects the current standard in K–12 mathemat-
ics education in India, and thus represents the
best supplemental training currently known to be
available, and the most likely choice absent a
stronger alternative.

We followed children over the course of 3 years
and assessed outcomes using a battery of mathe-
matical and cognitive assessments, including mea-
sures of mental rotation, approximate number, and
spatial and VWM. These tasks were administered
both prior to intervention and at the end of each
school year so as to probe the extent of any possible
cognitive mediation or transfer effects.

Method

Participants

We enrolled an entire cohort of English-medium
students attending a charitable school for low-
income children in Vadodara, India. Children are
admitted to the school on a first-come, first-served
basis for a fee of 630 rupees (US $10) per month,
which is paid in full by the school trust in cases of
need. At the initiation of the study, over 80% of
children attending the school came from families
who earned < US $2,000 per annum (~US $5.50/
day). In our sample, 59% of children came from
Hindu families and 41% from Muslim families.
Most children were native speakers of Gujarati, the
local dialect, and also spoke Hindi and English (the
language of instruction in the English-medium pro-
gram at the school). The total population of the
school was approximately 2,100 students, ranging
from pre-K to high school.
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Data collection took place from June 2010
through March 2013. At the time of enrollment
(which we refer to as Year 0), the participants were
204 children aged 5–7 years old who were begin-
ning their second-grade year. We randomly
assigned these students to two groups, MA and
control. We then further randomly assigned chil-
dren into three homeroom classrooms of approxi-
mately 65–70 children each (differing from their
classroom assignments in the previous year), with
one classroom comprising MA students, one control
students, and one split half and half. Thus, children
in each group took all of their classes together, with
the exception of the split group, who were sepa-
rated when receiving supplemental mathematics
training (either MA or standard curriculum,
depending on their group assignment). Because
these differences could have affected students’
uptake of the intervention—for example, due to dif-
ferences in peer influence—we present analyses of
possible classroom effects in the Supporting Infor-
mation.

Of the 100 students in the MA group and the
104 students in the control group, 88 (88%) and 99
(95%) provided some data in every year of testing,
respectively. Dropouts from the study were primar-
ily due to changes of school. We analyzed data
only from this group of 183 students (those who
were present for the entire study). If a child was
present for each study visit but had missing data
for some individual measures, their data were
included in the sample. The proportion of missing
values for measures ranged from 0.1% (VWM) to
4.6% (number comparison). Missing values for indi-
vidual measures were sometimes due to sickness,
absences, or an inability to answer any items (espe-
cially in early years).

Intervention Procedure

Children in both the MA and control groups
studied the school’s standard (nonabacus) mathe-
matics curriculum over the duration of the study in
their regular home classrooms. Additionally, both
groups received 3 hr/week of additional mathemat-
ics instruction as follows. In the MA group, chil-
dren were given 3 hr/week of instruction in the
use of the physical and MA by an experienced MA
teacher outside the children’s home classroom (such
that control group children were not exposed to
MA technique). The same teacher provided MA
instruction to all MA children. Abacus instruction
was broken into two 90-min sessions per week
(3 hr/week total) and followed a common interna-

tional curriculum that begins with use of the
physical abacus for addition and subtraction, and
then moves to MA computations. The 1st year of
training focused primarily on the physical abacus,
with greater emphasis placed on MA in subsequent
years. Common activities in the MA training pro-
gram included worksheet practice of addition and
subtraction, practice translating abacus configura-
tions into Arabic numerals, and practice doing
speeded arithmetic using MA.

Control students were provided with two 90-min
sessions per week of supplemental mathematics
training using the Oxford University Press New
Enjoying Mathematics series, designed in accordance
with the Indian National Curriculum Framework
(National Council for Education Research and
Training, 2005). Texts in this series emphasize both
conceptual mathematics and drills, including train-
ing of mental math with “worksheets focusing on
special strategies followed by exercises for fast cal-
culation” (see http://www.oup.co.in), and thus
constitute a strong control to the MA manipulation.

Assessment Procedure

The study spanned 3 years of the participants’
elementary education, and began with a baseline
test before training began. In each of four annual
assessments, children received a large battery of
computerized and paper-based tasks. Year 0 assess-
ments were given at the beginning of second grade;
Years 1–3 assessments were given at the end of sec-
ond, third, and fourth grades, respectively. All
assessments included both measures of mathemat-
ics and more general cognitive measures. A small
number of other tasks were included but are not
discussed in the current study (see the Supporting
Information for detailed descriptions of all mea-
sures and administration procedures).

Mathematics Measures

Children completed the Calculation subtest
of the Woodcock–Johnson Tests of Achievement
(WJ–IIIC) and the Math Fluency subtest of the
Wechsler Individual Achievement Test (WIAT–III).
We also administered two in-house assessments of
mathematics skill that, unlike the standardized
tests, were designed to specifically target arithmetic
skills acquired between second and fourth grades
(see the Supporting Information). The first mea-
sured the children’s arithmetic abilities by testing
performance in single- and multidigit addition, sub-
traction, division, and multiplication problems. The
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second measured the conceptual understanding of
place value by asking children to complete number
decomposition problems (e.g., 436 = 6 + ___ + 30).

Cognitive measures. At each assessment point,
children completed one to two subsets of 10 prob-
lems from Raven’s Progressive Matrices (Raven,
1998), as well as two paper-based tests of speeded
mental rotation (one using letters and one using
shapes). They also completed three computerized
tasks: (a) an adaptive test of SWM, (b) an adaptive
test of VWM, and (c) a number comparison task, in
which children were asked to indicate the larger of
two dot arrays (see the Supporting Information,
Section 1 for detailed task descriptions and related
citations). For the working memory tasks, we report
estimates of span—that is, the average number of
items on which a child was successful. For the
number comparison task, we report Weber fractions
(a measure of approximate number acuity, esti-
mated from our task via the method of Halberda,
Mazzocco, & Feigenson, 2008).

Grades. For each year, we obtained children’s
grades in English, math, science, and computer
classes, as well as in music, art, and physical educa-
tion.

Abacus-only measures. For each year after the
intervention began, students in the MA group com-
pleted a set of three paper-and-pencil tasks to
assess their ability to use an abacus. All three were
administered after the end of all other testing. The
first two, abacus sums (addition) and abacus arith-
metic (addition and subtraction), tested the ability
to do computations using a physical abacus, while
the third, abacus decoding, tested the ability to
decode abacus images into standard Arabic numer-
als. These tasks allowed us to verify that any differ-
ences between the MA and control groups were
indeed mediated by changes to abacus skills.

Attitude measures. In Year 3, we administered
two measures that explored whether the interven-
tion had changed children’s attitude toward math-
ematics and, thus, whether training effects might
be mediated by differences in motivational level
and engagement with mathematics. This allowed
us not only to test whether MA caused changes
in children’s attitudes toward mathematics, but
also to ask whether any differences we find
between groups might be due, in part, to a pla-
cebo effect, whereby exposure to a new training
paradigm improves performance by changing chil-
dren’s attitudes toward math. First, we adminis-
tered a growth mindset questionnaire (adapted
from Dweck, 1999), which probed children’s atti-
tudes regarding the malleability of their own intel-

ligence. Second, we administered a math anxiety
questionnaire (adapted from Ramirez, Gunderson,
Levine, & Beilock, 2013), which measured the anx-
iety that children experienced when solving differ-
ent kinds of math problems and participating in
math class.

Data Analysis

Despite randomization, there were some baseline
differences between the MA and control groups at
initiation. The MA group performed significantly
better on two of the four math assessments (though
they did not differ on any of the cognitive mea-
sures): arithmetic, t(183) = 2.65, p = .01, and WIAT–
III, t(160) = 2.08, p = .04. Because of these differ-
ences, we interpret simple comparisons between
groups with caution. Instead, we used a longitudi-
nal mixed models approach to quantify the statisti-
cal reliability of the effects of randomization to
training group on our outcome measures. This
approach controls for baseline effects for individual
students and attempts to predict longitudinal gains
(rather than absolute level of performance) as a
function of intervention group (see the Supporting
Information, Section 4.8 for more discussion and an
alternative approach to this issue using propensity
score matching). Critically, the baseline differences
observed here (with a modest advantage for the
MA group) render the longitudinal growth models
less likely to find significant intervention effects.
Consequently, in one interpretation, our study
could be an overly conservative assessment of MA
training. We revisit this issue and its implications
for our findings in the Discussion.

For each outcome measure, we fit a baseline
model that included a growth term for each student
over time and an overall main effect of intervention
group (to control for differences between groups at
study initiation). We then tested whether the fit of
this model was improved significantly by an inter-
action term capturing the effect of the intervention
over time. All data and code for the analyses
reported here are available at http://github.com/
langcog/mentalabacus; further details of statistical
models are available in the Supporting Information,
Section 4.1.

Because we did not have any a priori hypotheses
about the shape of the dose–response function
between the intervention and particular measures
of interest, we fit models using three types of
growth terms: (a) simple linear growth over time,
(b) quadratic growth over time, and (c) indepen-
dent growth for each year after baseline. This last
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type of model allows for the possibility of
nonmonotonic growth patterns. We tested for inter-
actions between group assignment and growth in
each of these models. All p values are reported
from likelihood ratio tests (see the Supporting Infor-
mation, Section 4.1).

Results

Mathematics Outcomes

As seen in Figure 2, MA training produced sig-
nificant gains in mathematical abilities relative to
the control group. Consistent with this, in Year 3,
we observed numerical differences between the two
groups on three of the four mathematics tasks, with
effect sizes of Cohen’s d = .60, 95% CI [.30, .89] for
arithmetic; .24, 95% CI [�.05, .52] for WJ–IIIC; and
.28, 95% CI [.00, .57] for place value. We observed
only a small numerical difference for WIAT–III,
however, d = .13, 95% CI [�.15, .42].

Because the confidence intervals for the effect
sizes described above represent confidence intervals

on pairwise tests for Year 3 alone, they do not
control for baseline differences at initiation. Thus,
we used longitudinal growth models to assess
whether advantages observed in the MA group
were in fact driven by additional MA training (Fig-
ure 2). All three of these models (i.e., linear, quad-
ratic, and nonmonotonic) showed strong
Time 9 Condition interactions for both the arith-
metic and WJ–IIIC measures, suggesting that per-
formance on each of these tasks did improve with
additional MA training. Likelihood ratio tests for
adding the Time 9 Condition interaction term to
the growth model were v2linear(1) > 6.33,
v2quadratic(2) > 11.56, and v2independent(3) > 12.51,
with ps < .01 in all cases.

Consistent with the small numerical difference
observed between groups on the WIAT–III, this
measure did not approach significance in any of the
three growth models. The smaller effects observed
on the standardized measures are perhaps not sur-
prising, given the smaller number of arithmetic-
focused items on these measures and hence the
likelihood of them having lower sensitivity to indi-

Figure 2. Mathematics outcome measures for the two intervention conditions, plotted by study year (with 0 being preintervention).
Error bars show 95% confidence intervals computed by nonparametric bootstrap. MA = mental abacus; WIAT = Wechsler Individual
Achievement Test.
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vidual differences between children of this age (see
the Supporting Information, Section 4.7 for further
analysis). More surprising, however, was that the
place value measure did not approach significance
in the growth models, especially given that we
observed substantial numerical differences between
the groups (e.g., performance in Year 3 differed
significantly between groups in a univariate analy-
sis), t(185) = 1.96, p = .05. We speculate that we did
not observe consistent growth with this measure due
to its low reliability from Year 0 to Year 1 (r = .22).

Together, these analyses suggest that the MA
intervention was more effective in building stu-
dents’ arithmetic skill than an equivalent amount of
supplemental training in standard mathematics
techniques. Effects of MA training on arithmetic
ability were observed not only in our in-house mea-
sure, which included many arithmetic problems tai-
lored to the level of elementary school students, but
also on the WJ–III test of Calculation, a widely used
standardized measure that includes a range of
problem types and formats. While the evidence for
differential gains in conceptual understanding of
place value was more limited, MA students did not
fall behind students in the control group, despite
the fact that the MA curriculum primarily stresses
rote calculation rather than conceptual understand-
ing.

Cognitive Outcomes

Although MA training produced consistent gains
in arithmetic ability, it did not produce consistent
gains in the cognitive abilities we measured
(Figure 3). Higher math performance in the MA
group was therefore not the result of improved cog-
nitive capacity due to MA training. For example, in
Year 3, we observed between-group effect sizes of
�.16, 95% CI [�.45, .12] on our number comparison
measure (note that smaller Weber fractions indicate
more accurate estimations). Also, we found an
effect size of �.14, 95% CI [�.43, .15] for Raven’s
progressive matrices; of �.06, 95% CI [�.34, .23] for
mental rotation; and of .05, 95% CI [�.24, .34] for
SWM. Only one cognitive measure—VWM—
showed an advantage in Year 3 for the MA group,
.26, 95% CI [�.03, .55].

For these cognitive measures, as with the arith-
metic tasks, we used longitudinal growth models to
assess whether advantages for the MA group were
driven by training in MA. Because we used differ-
ent sets of Raven’s problems for each year, we
could not fit growth models, but t tests showed no
reliable effects of MA training for any year (all

ts < 0.96, ps > .34). Similarly, longitudinal models
(linear, quadratic, and independent) confirmed that
none of the cognitive tasks (numerical comparison,
mental rotation, VWM, or SWM), showed signifi-
cant Time 9 Condition interactions, with one
exception. For VWM, the nonindependent growth
model showed a significant Time 9 Condition
interaction (p < .01), though both linear and quad-
ratic growth models showed no significant
Time 9 Condition interaction (Supporting Informa-
tion, Section 4.4). Thus, this result appears to have
been driven by the fast growth in VWM span in
Year 1 exhibited by the MA group, relative to the
control group (see Figure 3).

The large effect of MA training on VWM in Year
1 is mirrored in a similar trend observed in SWM
in Years 1 and 2, significant or close to significant
in individual t tests, t(185) = 2.36, p = .02 and
t(184) = 1.84, p = .07, but not in any longitudinal
model. In both cases, the overall shape of the devel-
opmental curve is asymptotic, with working mem-
ory spans approaching approximately four items by
Year 2 in the MA group. This pattern could be
interpreted as evidence that differences in working
memory between the MA and control groups do
exist, but are expressed only in the rate of growth
to asymptote rather than in the absolute level of the
asymptote itself. Against this hypothesis, however,
additional analyses (Supporting Information, Sec-
tion 4.5) find that (a) our SWM task did not exhibit
ceiling effects and (b) data from 20 American col-
lege undergraduates and 67 high-socioeconomic-
status (SES) Indian children from the same region
of India show that children in our study had over-
all lower SWM than higher SES children, and were
far from being at adult levels of performance. Most
important, these Year 1 effects surfaced before chil-
dren began to receive training on the mental com-
ponent of MA and were still learning the physical
technique. We therefore do not believe that this
result is likely to be related to the ultimate gains
we see in MA across the study.

Academic Outcomes

MA did not produce large, consistent changes in
students’ grades across academic subjects, although
we saw some small trends toward better math,
science, and computer grades in the MA group in
some models. These differences are subject to
teacher bias, however, since teachers were of course
knowledgeable about the intervention. Thus, we do
not believe they should be weighted heavily in
evaluating performance, especially since our own
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standardized measures of mathematical competence
were available for analysis (for additional analysis,
see the Supporting Information and Figure S1).

Attitude Measures

There were no differences between groups on
either children’s self-reported mathematics anxiety,
t(184) = 1.05, p = .29, or their endorsement of a
growth mindset, t(184) = �0.61, p = .54. Thus, it is
unlikely that differences we observed in mathemat-
ics measures were due to differential effects of our
intervention on children’s anxiety about mathemat-
ics or on their general mindset toward learning.

Mediators of Intervention Effects

Given that MA training produced gains in math
outcomes, we next asked which factors mediated
these gains, and thus whether individual differences
between children at the beginning of the study pre-
dicted MA achievement. As already noted, MA
training did not augment cognitive abilities, so the
math advantages in the MA group could not have
been driven by enhanced working memory, mental

imagery, or approximate number acuity that
resulted from MA training. However, it is possible
that individual cognitive differences between
children in the MA group (prior to their entry into
the study) were responsible for how well they
learned and benefited from MA. To explore this
possibility, we conducted post hoc analyses using
moderator variables.

Our analytic approach relied on the same longi-
tudinal modeling approach described earlier. For
each math outcome variable, we fit models that
included participants’ Year 0 performance on each
cognitive predictor (for simplicity and to avoid
overparameterizing our models, we used linear and
quadratic models only). The coefficient of interest
was a three-way interaction of time, condition, and
initial performance on the cognitive predictor of
interest. This three-way interaction term captures
the intuition that growth in performance on a task
for MA participants is affected by their baseline
abilities on a particular cognitive task. As stated
earlier, we used likelihood ratio tests to assess
whether these interaction terms improved model
fit. Although with greater numbers of longitudinal
measurements we could potentially have detected

Figure 3. Cognitive outcome measures for the two intervention conditions, plotted by study year. Top axes show mean items correct in
working memory span tasks, while bottom axes show proportion correct across trials in number comparison and mental rotation tasks.
Error bars show 95% confidence intervals computed by nonparametric bootstrap. MA = mental abacus; WM = working memory.
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interactive growth patterns (e.g., gains in working
memory driving later gains in mathematics), our
current study did not have the temporal resolution
for these analyses. We thus restrict our analysis to
testing for mediation in mathematics outcomes on
the basis of each of the cognitive variables mea-
sured at Year 0.

A median split of children according to SWM
prior to MA training resulted in a low-SWM group
with an average threshold of 1.9 items, and a high-
SWM group with an average threshold of 3.7 items.
Previous studies of SWM thresholds for middle- to
high-SES 5- to 7-year-olds find thresholds of
approximately 3.5 to 4 items (Logie & Pearson,
1997; Pickering, 2010). Thus, a subset of children in
our study exhibited especially low SWM capacity
(for comparison, slightly older high-SES participants
from the same city had mean SWM thresholds of
4.7, and adult controls had a threshold of 6.4; see
the Supporting Information). Related to this, SWM
was a reliable moderator in both linear and quadra-
tic models of arithmetic (Figure 4). Those children
who began the study with relatively strong SWM
skills and who were randomly assigned to MA
training showed significantly stronger growth in
our arithmetic assessment, v2linear(1) = 4.63, p < .05,
and v2quadratic(2) = 5.93, p = .05. Relative to receiv-
ing equal amounts of standard math training, chil-
dren with weaker SWM did not appear to benefit
differentially from the MA intervention and instead
performed at an equivalent level to the students in
the control group. Since the MA technique relies on
visuospatial resources for storage of the abacus
image during computation (Frank & Barner, 2011),
it seems likely that those children with relatively

lower SWM spans struggled to learn to perform
computations accurately using MA.

There was no comparable mediation effect
with VWM (additional analysis in the Support-
ing Information, Section 4.4), but a small number
of additional moderation effects did approach
significance in one of the two models. There was
a trend toward an effect of SWM on WJ–IIIC,
the other mathematics measure that showed
strong MA effects, v2quadratic(2) = 5.59, p = .06,
(Figure S3). In addition, there were trends
toward effects of Year 0 mental rotation perfor-
mance on arithmetic, v2linear(1) = 2.71, p = .10;
place value, v2linear(1) = 3.27, p = .07; and an
effect of number comparison acuity on WJ–IIIC,
v2quadratic(2) = 8.29, p = .02 (Figure S4). These
effects, though more tentatively supported, are
nevertheless consistent with the hypothesis that
the MA intervention was most effective for chil-
dren with greater visuospatial abilities at the
beginning of instruction.

Abacus-Only Measures

Confirming that children in the MA group
learned to use an abacus, we found consistently
high performance in abacus decoding for the MA
group (> 80% correct for all years). Also, perfor-
mance on the abacus arithmetic and sums tasks
rose substantially from year to year, suggesting that
children’s abacus computation abilities improved
over the course of their training (Figure 5). Perfor-
mance on these tests of physical abacus arithmetic
were significantly correlated with performance on
our other math measures (in-house arithmetic:
rs = .69, .74, and .81 for Years 1–3, respectively, all
ps < .0001; WIAT: rs = .57, .54, .73, all ps < .0001;
and WJ: rs = .45, .51, .64, all ps < .0001).

Critically, SWM span in Year 0 was also related
to intervention uptake, as measured by the abacus-
only tasks, which required MA students to use a
physical abacus. Because we did not have abacus-
only data for Year 0, we could not directly test
whether SWM moderated growth, but we did find
a main effect of SWM on all three measures of aba-
cus uptake for both linear and quadratic growth
models, all v2s (1) > 3.97, all ps < .05 (Figure 5).

Discussion

Our study investigated the nature of MA expertise,
and whether MA is an effective tool for improving
math outcomes in a standard classroom setting. To

Figure 4. Performance on the arithmetic task, split by both inter-
vention condition and median spatial working memory perfor-
mance in Year 0. Error bars show 95% confidence intervals; lines
show best fitting quadratic curves. MA = mental abacus.
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do this, we conducted a 3-year longitudinal study
of MA training. We found that MA training led to
measurable gains in students’ ability to perform
accurate arithmetic computations. These gains
began to emerge after a single year of training—
suggesting that simply learning to use the physical
abacus had some effects on students’ mathematics
aptitude, even prior to learning the MA technique
—and became more pronounced with time. Consis-
tent with a role for abacus expertise in explaining
the intervention effect, we found that physical aba-
cus expertise at the end of the study was signifi-
cantly correlated with arithmetic performance
across all math measures within our experimental
group (see Stigler et al., 1986, for a similar result).
Also, these gains were not related to motivational
or attitudinal differences toward mathematics or
intellectual self-efficacy, suggesting that gains in the
MA group are not easily attributable to a placebo
effect. Finally, although there were signs of early
gains in cognitive capacities like SWM in the MA
group, such effects did not persist to the end of the
study and could not explain gains in mathematics
achievement. Instead, we found that gains were
most pronounced among children who exhibited
relatively higher SWM capacity at the beginning of
the study.

One important limitation of our study was “un-
happy randomization,” which resulted in baseline
differences between MA and control groups despite
random assignment. The critical analyses we report
here are longitudinal growth models that control
for ability at initiation, and we report other statisti-
cal corrections in the Supporting Information. But
we cannot rule out the possibility that these base-
line differences affected our findings. In one inter-
pretation, a baseline advantage for MA would
make it harder for us to detect training advantages
above baseline (especially if part of that initial
advantage was due to random factors other

than true mathematics ability). In another
interpretation, however, if the baseline advantage
of the MA group were due to true differences
in ability, these baseline differences could cause a
cascade of further positive learning outcomes that
our models do not control for (see Siegler & Pyke,
2013, for an example). Either interpretation suggests
that our findings—in particular, the quantitative
results regarding the size of mathematical gains
due to MA—should be interpreted cautiously until
they are replicated with another sample.

Acknowledging the caveat above, these findings
nevertheless support three main conclusions. First,
compared to standard methods of mathematics
training, MA may offer some benefits to students
seeking supplemental instruction. Relative to addi-
tional training with techniques used in popular
mathematics textbooks, MA instruction appeared to
result in greater gains in arithmetic ability and
equivalent effects on conceptual understanding.
However, the data also provide reason to believe
that this advantage may be limited to children who
begin training with average or above-average SWM
capacity: A median split of children based on their
Year 0 SWM capacity revealed that children with
relatively higher SWM capacity were especially
likely to benefit from training. Because MA relies
on visuospatial resources for the storage and main-
tenance of abacus images during computation
(Frank & Barner, 2011), children with especially
weak SWM may have attained only basic MA abili-
ties—enough to reap benefits equal to additional
hours of standard math, but not to acquire unusual
expertise.

This difference related to SWM capacity suggests
a second conclusion, which is that the development
of MA expertise is mediated by children’s preexist-
ing cognitive abilities. Consequently, MA may not
be suitable for all K–12 classroom environments,
especially for groups of children who have

Figure 5. Performance on the Physical Abacus Sums, Decoding, and Arithmetic tasks (administered in Years 1–3), plotted by a median
split on spatial working memory (SWM). Error bars show 95% confidence intervals computed by nonparametric bootstrap.
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especially low SWM or attentional capacities (a situ-
ation that may have been the case for some children
in our study). Critically, this finding does not imply
that MA training benefits depend on unusually
strong cognitive abilities. Perhaps because we stud-
ied children from relatively disadvantaged back-
grounds, few children in our sample had SWM
capacities comparable to those seen among typical
children in the United States. Studies currently
underway are exploring this possibility.

Third, based on the discussion thus far, our find-
ings are consistent with previous suggestions that
“cognitive transfer” is rare. Although performance
on basic measures of attention and memory can be
improved via direct training on those measures
(Diamond & Lee, 2011; Gathercole, Dunning,
Holmes, & Wass, 2016; Melby-Lerv�ag & Hulme,
2012; Noack, L€ovd�en, Schmiedek, & Lindenberger,
2013), it may be difficult to achieve “far” transfer
from training on unrelated tasks, even with hours
of focused practice (Dunning, Holmes, & Gather-
cole, 2013; Owen et al., 2010; Redick et al., 2013).
However, our findings suggest that although cogni-
tive capacities are not importantly altered by MA,
they may predict which children will benefit most
from MA training. MA students who began our
study with low SWM abilities did not differ in their
math performance from control students, while
those above the median made large gains on our
arithmetic measure (similar effects were not seen
for VWM).

Our study leaves open several questions about
MA as an educational intervention. First, it remains
uncertain how much training is necessary to benefit
from MA. In our study, children received over
100 hr of MA instruction over 3 years. Future stud-
ies should investigate the efficacy of MA training in
smaller, more focused sessions, and also whether
the required number of training hours is smaller in
different populations (e.g., in middle- or high-SES
groups). Second, future studies should contrast MA
with other training regimens that focus more exclu-
sively on intensive arithmetic training. Our current
focus was to assess the practical utility of MA as an
alternative to current supplemental training prac-
tices, and our study suggests an advantage for MA,
at least on some measures. However, it is possible
that other forms of training can also yield the types
of benefits observed for MA and that the levels of
performance seen in our study are not unique to
visuospatial techniques like MA.

Finally, our results raise questions regarding the
efficacy of concrete manipulative systems in the
classroom. Although we found positive effects of

abacus training compared to other methods, this
benefit emerged over 3 years of extensive weekly
training. Previous studies have found mixed results
regarding the effectiveness of manipulatives for
teaching mathematics (Ball, 1992; Uttal, Scudder, &
DeLoache, 1997). However, MA may be unlike
other manipulative systems. Although the abacus is
a concrete representation of numerosity that can be
used to reinforce abstract concepts, the method is
unique in requiring the use of highly routinized
procedures for arithmetic calculation. Thus, addi-
tional research is needed to understand how MA
differs from other manipulatives with respect to its
educational benefits.

In sum, we find evidence that MA—a system
rooted in a centuries-old technology for arithmetic
and accounting—is likely to afford some children a
measurable advantage in arithmetic calculation
compared to additional hours of standard math
training. Our evidence also suggests that MA pro-
vides this benefit by building on children’s preexist-
ing cognitive capacities rather than by modifying
their ability to visualize and manipulate objects in
working memory. Future studies should explore
the long-term benefits of enhanced arithmetic abili-
ties using MA and the generalizability of this tech-
nique to other groups and cultural contexts.
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